I2C communication in PSLab Android

PSLab device is a compact electronic device with a variety of features. One of them is the ability to integrate sensors and get readings from them. One might think that why they should use PSLab device to get sensor readings and they can use some other hardware like Arduino. In those devices, user has to create firmware and need to know how to interface them with correct sampling rates and settings. But with PSLab, they all come in the whole package. User just have to plug the device to his phone and the sensor to device and he’s ready.

The idea of this blog post is to show how this sophisticated process is actually happening. Before that, let me give you a basic introduction on how I2C communication protocol works. I2C protocol is superior to UART and SPI protocols as they are device limited or requires many wires. But with I2C, you can literally connect thousands of sensors with just 4 wires. These wires are labeled as follows;

  • VCC – Power line
  • GND – Ground line
  • SDA – Data line
  • SCL – Signal clock

It is required that the SDA and SCL lines need to be connected to VCC line using two pull up resistors. But that’s just hardware. Let’s move on to learn how I2C communicate.

Here there is this communicating concept called master and slave. To start communication, master issues a global signal like a broadcast to all the devices connected to SCL and SDA lines. This signal contains the address of the slave, master needs to address and get data from. If the slave received this call to him, he will pull down the SDA line to signal the master that he heard him and ready to communicate with him. Here communication means reading or writing data. Then the communication happens and the link between master and slave breaks giving opportunity to other masters and slaves.

One might think this is a slow process. But these signals are transmitted at high frequencies. In PSLab it is at 100 kHz and that is one millisecond.

PSLab library has a special class to handle I2C communication. That is

public class I2C {/**/}

 

Once this class is initiated, one has to call the start function to start communication. This method requires the address we wish to communicate with and the mode of operation stating if it is a read or write operation

public int start(int address, int rw) throws IOException {
   packetHandler.sendByte(commandsProto.I2C_HEADER);
   packetHandler.sendByte(commandsProto.I2C_START);
   packetHandler.sendByte((address << 1) | rw & 0xff);
   return (packetHandler.getAcknowledgement() >> 4);
}

 

Once the address is sent out, protocol requires us to stop and wait for acknowledgement.

public void wait() throws IOException {
   packetHandler.sendByte(commandsProto.I2C_HEADER);
   packetHandler.sendByte(commandsProto.I2C_WAIT);
   packetHandler.getAcknowledgement();
}

 

If there are no congestion in the lines such as reading from multiple devices, the acknowledgement will be instantaneous. Once that is complete, we can start communication either byte-wise or bulk-wise

public int send(int data) throws IOException {
   packetHandler.sendByte(commandsProto.I2C_HEADER);
   packetHandler.sendByte(commandsProto.I2C_SEND);
   packetHandler.sendByte(data);
   return (packetHandler.getAcknowledgement() >> 4);
}

 

As an example, reading sensor values at a given interval can be done using the following method call.

public ArrayList<Byte> read(int length) throws IOException {
   ArrayList<Byte> data = new ArrayList<>();
   for (int i = 0; i < length - 1; i++) {
       packetHandler.sendByte(commandsProto.I2C_HEADER);
       packetHandler.sendByte(commandsProto.I2C_READ_MORE);
       data.add(packetHandler.getByte());
       packetHandler.getAcknowledgement();
   }
   packetHandler.sendByte(commandsProto.I2C_HEADER);
   packetHandler.sendByte(commandsProto.I2C_READ_END);
   data.add(packetHandler.getByte());
   packetHandler.getAcknowledgement();
   return data;
}

 

Once we get the data bundle, either we can save them or display in a graph whatever the way it’s convenient.

Reference:

  1. https://en.wikipedia.org/wiki/I%C2%B2C

Continue Reading

Sensor Data Logging in the PSLab Android App

The PSLab Android App allows users to log data from sensors connected to the PSLab hardware device. The Connected sensors should support I2C, SPI communication protocols to communicate with the PSLab device successfully. The only prerequisite is the additional support for the particular sensor plugin in Android App. The user can log data from various sensors and measure parameters like temperature, humidity, acceleration, magnetic field, etc. These parameters are useful in predicting and monitoring the environment and in performing many experiments.

The support for the sensor plugins was added during the porting python communication library code to Java. In this post,  we will discuss how we logged real time sensor data from the PSLab Hardware Device. We used Realm database to store the sensor data locally. We have taken the MPU6050 sensor as an example to understand the complete process of logging sensor data.

Creating Realm Object for MPU6050 Sensor Data

The MPU6050 sensor gives the acceleration and gyroscope readings along the three axes X, Y and Z. So the data object storing the readings of the mpu sensor have variables to store the acceleration and gyroscope readings along all three axes.

public class DataMPU6050 extends RealmObject {

   private double ax, ay, az;
   private double gx, gy, gz;
   private double temperature;

   public DataMPU6050() {  }

   public DataMPU6050(double ax, double ay, double az, double gx, double gy, double gz, double temperature) {
       this.ax = ax;
       this.ay = ay;
       this.az = az;
       this.gx = gx;
       this.gy = gy;
       this.gz = gz;
       this.temperature = temperature;
   }

  // getter and setter for all variables
}

Creating Runnable to Start/Stop Data Logging

To sample the sensor data at 500ms interval, we created a runnable object and passed it to another thread which would prevent lagging of the UI thread. We can start/stop logging by changing the value of the boolean loggingThreadRunning on button click. TaskMPU6050 is an AsyncTask which reads each sample of sensor data from the PSLab device, it gets executed inside a while loop which is controlled by boolean loggingThreadRunning. Thread.sleep(500) pauses the thread for 500ms, this is also one of the reason to transfer the logging to another thread instead of logging the sensor data in UI thread. If such 500ms delays are incorporated in UI thread, app experience won’t be smooth for the users.

Runnable loggingRunnable = new Runnable() {
   @Override
   public void run() {
       try {
           MPU6050 sensorMPU6050 = new MPU6050(i2c);
           while (loggingThreadRunning) {
               TaskMPU6050 taskMPU6050 = new TaskMPU6050(sensorMPU6050);
               taskMPU6050.execute();
              // use lock object to synchronize threads
               Thread.sleep(500);
           }
       } catch (IOException   InterruptedException e) {
           e.printStackTrace();
       }
   }
};

Sampling of Sensor Data

We created an AsyncTask to read each sample of the sensor data from the PSLab device in the background thread. The getRaw() method read raw values from the sensor and returned an ArrayList containing the acceleration and gyro values. After the values were read successfully, they were updated in the data card in the foreground which was visible to the user. This data card acts as a real-time screen for the user. All the samples read are appended to ArrayList mpu6050DataList, when the user clicks on button Save Data, the collected samples are saved to the local realm database.

private ArrayList<DataMPU6050> mpu6050DataList = new ArrayList<>();

private class TaskMPU6050 extends AsyncTask<Void, Void, Void> {

   private MPU6050 sensorMPU6050;
   private ArrayList<Double> dataMPU6050 = new ArrayList<>();

   TaskMPU6050(MPU6050 mpu6050) {
       this.sensorMPU6050 = mpu6050;
   }

   @Override
   protected Void doInBackground(Void... params) {
       try {
           dataMPU6050 = sensorMPU6050.getRaw();
       } catch (IOException e) {
           e.printStackTrace();
       }
       return null;
   }

   @Override
   protected void onPostExecute(Void aVoid) {
       super.onPostExecute(aVoid);
       // update data card TextViews with data read.
       DataMPU6050 tempObject = new DataMPU6050(dataMPU6050.get(0), dataMPU6050.get(1), dataMPU6050.get(2),
               dataMPU6050.get(4), dataMPU6050.get(5), dataMPU6050.get(6), dataMPU6050.get(3));
       mpu6050DataList.add(tempObject);
       synchronized (lock) {
           lock.notify();
       }
   }
}
Source: PSLab Android App

There is an option for Start/Stop Logging, clicking on which will change the value of boolean loggingThreadRunning which stops starts/stops the logging thread.

When the Save Data button is clicked, all the samples of sensor data collected from the  PSLab device till that point are saved to the local realm database.

realm.beginTransaction();
for (DataMPU6050 tempObject : mpu6050DataList) {
   realm.copyToRealm(tempObject);
}
realm.commitTransaction();

Data can also be written asynchronously to the local realm database. For other methods to write to a real database refer write section of Realm docs.

Resources

Continue Reading

SPI Communication in PSLab

PSLab supports communication using the Serial Peripheral Interface (SPI) protocol. The Desktop App as well as the Android App have the framework set-up to use this feature. SPI protocol is mainly used by a few sensors which can be connected to PSLab. For supporting SPI communication, the PSLab Communication library has a dedicated class defined for SPI. A brief overview of how SPI communication works and its advantages & limitations can be found here.

The class dedicated for SPI communication with numerous methods defined in them. The methods required for a particular SPI sensor may differ slightly, however, in general most sensors utilise a certain common set of methods. The set of methods that are commonly used are listed below with their functions.

In the setParameters method, the SPI parameters like Clock Polarity (CKP/CPOL), Clock Edge (CKE/CPHA), SPI modes (SMP) and other parameters like primary and secondary prescalar which are specific to the device used.

Primary Prescaler (0,1,2,3) for 64MHz clock->(64:1,16:1,4:1,1:1)

Secondary prescaler (0,1,..7)->(8:1,7:1,..1:1)

The values of CKP/CPOL and CKE/CPHA needs to set using the following convention and according to our requirements.

  • At CPOL=0 the base value of the clock is zero, i.e. the idle state is 0 and active state is 1.
    • For CPHA=0, data is captured on the clock’s rising edge (low→high transition) and data is changed at the falling edge (high→low transition).
    • For CPHA=1, data is captured on the clock’s falling edge (high→low transition) and data is changed at the rising edge (low→high transition).
  • At CPOL=1 the base value of the clock is one (inversion of CPOL=0), i.e. the idle state is 1 and active state is 0.
    • For CPHA=0, data is captured on the clock’s falling edge (high→low transition) and data is changed at the rising edge (low→high transition).
    • For CPHA=1, data is captured on the clock’s rising edge (low→high transition) and data is changed at the falling edge (high→low transition).

public void setParameters(int primaryPreScalar, int secondaryPreScalar, Integer CKE, Integer CKP, Integer SMP) throws IOException {
        if (CKE != null) this.CKE = CKE;
        if (CKP != null) this.CKP = CKP;
        if (SMP != null) this.SMP = SMP;

        packetHandler.sendByte(commandsProto.SPI_HEADER);
        packetHandler.sendByte(commandsProto.SET_SPI_PARAMETERS);
        packetHandler.sendByte(secondaryPreScalar | (primaryPreScalar << 3) | (this.CKE << 5) | (this.CKP << 6) | (this.SMP << 7));
        packetHandler.getAcknowledgement();
    }

 

The start method is responsible for sending the instruction to initiate the SPI communication and it takes the channel which will be used for communication as input.

public void start(int channel) throws IOException {
        packetHandler.sendByte(commandsProto.SPI_HEADER);
        packetHandler.sendByte(commandsProto.START_SPI);
        packetHandler.sendByte(channel);
    }

 

The setCS method is responsible for selecting the slave with which the SPI communication has to be done. This feature of SPI communication is known as Chip Select (CS) or Slave Select (SS). A master can use multiple Chip/Slave Select pins for communication whereas a slave utilises just one pin as SPI is based on single master multiple slaves principle. The capacity of PSLab is limited to two slave devices at a time.

public void setCS(String channel, int state) throws IOException {
        String[] chipSelect = new String[]{"CS1", "CS2"};
        channel = channel.toUpperCase();
        if (Arrays.asList(chipSelect).contains(channel)) {
            int csNum = Arrays.asList(chipSelect).indexOf(channel) + 9;
            packetHandler.sendByte(commandsProto.SPI_HEADER);
            if (state == 1)
                packetHandler.sendByte(commandsProto.STOP_SPI);
            else
                packetHandler.sendByte(commandsProto.START_SPI);
            packetHandler.sendByte(csNum);
        } else {
            Log.d(TAG, "Channel does not exist");
        }
    }

 

The stop method is responsible for sending the instruction to the stop the communication with the slave.

public void stop(int channel) throws IOException {
        packetHandler.sendByte(commandsProto.SPI_HEADER);
        packetHandler.sendByte(commandsProto.STOP_SPI);
        packetHandler.sendByte(channel);
    }

 

PSLab SPI class has methods defined for sending either 8-bit or 16-bit data over SPI which are further classified on whether they request the acknowledgement byte (it helps to know whether the communication was successful or unsuccessful) or not.

The methods are so named send8, send16, send8_burst and send16_burst . The burst methods do not request any acknowledgement value and as a result work faster than the normal methods.

public int send16(int value) throws IOException {
        packetHandler.sendByte(commandsProto.SPI_HEADER);
        packetHandler.sendByte(commandsProto.SEND_SPI16);
        packetHandler.sendInt(value);
        int retValue = packetHandler.getInt();
        packetHandler.getAcknowledgement();
        return retValue;
    }

 

Resources:

Continue Reading
Close Menu