The Pocket Science Lab: Who Needs it, and Why

Science and technology share a symbiotic relationship. The degree of success of experimentation is largely dependent on the accuracy and flexibility of instrumentation tools at the disposal of the scientist, and the subsequent findings in fundamental sciences drive innovation in technology itself. In addition to this, knowledge must be free as in freedom. That is, all information towards constructing such tools and using them must be freely accessible for the next generation of citizen scientists. A common platform towards sharing results can also be considered in the path to building a better open knowledge network.

But before we get to scientists, we need to consider the talent pool in the student community that gave rise to successful scientists, and the potential talent pool that lost out on the opportunity to better contribute to society because of an inadequate support system. And this brings us to the Pocket Science Lab

How can PSLab help electronics engineers & students?

This device packs a variety of fundamental instruments into one handy package, with a Bill-of-materials that’s several orders of magnitude less than a distributed set of traditional instruments.

It does not claim to be as good as a Giga Samples Per second oscilloscope, or a 22-bit multimeter, but has the potential to offer a greater learning experience. Here’s how:

  • A fresh perspective to characterize the real world. The visualization tools that can be coded on an Android device/Desktop (3D surface plots, waterfall charts, thermal distributions etc ), are far more advanced than what one can expect from a reasonably priced oscilloscope. If the same needs to be achieved with an ordinary scope, a certain level of technical expertise is expected from the user who must interface the oscilloscope with a computer, and write their own acquisition & visualization app.
  • Reduce the entry barrier for advanced experiments.: All the tools are tightly integrated in a cost-effective package, and even the average undergrad student that has been instructed to walk on eggshells around a conventional scope, can now perform elaborate data acquisition tasks such as plotting the resonant frequency of a tuning fork as a function of the relative humidity/temperature. The companion app is being designed to offer varying levels of flexibility as demanded by the target audience.
  • Is there a doctor in the house? With the feature set available in the PSlab , most common electronic components can be easily studied , and will save hours while prototyping new designs.  Components such as resistors, capacitors, diodes, transistors, Op-amps, LEDs, buffers etc can be tested.

How can PSLab help science enthusiasts ?

Physicists, Chemists and biologists in the applied fields are mostly dependent on instrument vendors for their measurement gear. Lack of an electronic/technical background hinders their ability to improve the gear at their disposal, and this is why a gauss meter which is basically a magnetometer coupled with a crude display in an oversized box with an unnecessarily huge transformer can easily cost upwards of $150 . The PSLab does not ask the user to be an electronics/robotics expert , but helps them to get straight to the acquisition part. It takes care of the communication protocols, calibration requirements, and also handles visualization via attractive plots.

A physicist might not know what I2C is , but is more than qualified to interpret the data acquired from a physical sensor, and characterize its accuracy.

  • The magnetometer (HMC5883L) can be used to demonstrate the dependence of the axial magnetic field on distance from the center of a solenoid
  • The pressure,temperature sensor (BMP280) can be used to verify the gas laws, and verify thermodynamic phenomena against prevalent theories.

Similarly, a chemist can use an RGB sensor (TCS3200) to put the colour of a solution into numbers, and develop a colorimeter in the process. Colorimeters are quite handy for determining molality of coloured solutions., and commercial ones are rather expensive. What it also needs is a set of LEDs with known wavelengths, and most manufacturers offer proper characterisation information.

What does it mean for the hobbyist?

It is capable of greatly speeding up the troubleshooting process . It can also instantly characterize the expected data from various sensors so that the hobbyist can code accordingly. For example, ‘beyond what tilt threshold & velocity should my humanoid robot swing its arms forward in order to prevent a broken nose?’ . That’s not a question that can be easily answered by said hobbyist who is currently in the process of developing his/her own acquisition system.

How can we involve the community?

The PSLab features an experiment designer that speeds acquisition by providing spreadsheets, analytical tools, and visualisation options all in one place. An option for users to upload their new experiments/utilities to the cloud, and subject those to a peer-review process has been planned. Following which , these new experiments can be pumped back into the ecosystem which will find more uses for it, improve it, and so on.

For example , a user can combine the waveform generator with an analog multiplier IC, and develop a spectrum analyzer.

The case for self-reliance

The average undergraduate laboratory currently employs dedicated instruments for each experiment as prescribed by the curriculum. These instruments often only include the measurement tools essential to the experiment, and students merely repeat the procedure verbatim. That’s not experimentation, it’s rather just verification. PSLab offers a wide array of additional instruments that can be employed by the student to enhance the experiment with their own inputs.

For example, a commonly used diode IV curve-tracer kit usually has a couple of power supplies, a voltmeter, and an ammeter. But, if a student wishes to study the impact of temperature on the band gap, he will hard pressed for the additional tools, and software to combine the acquisition process. With the PSLab, however , he/she can pick from a variety of temperature sensors (LM35, BMP180, Si7021 .. ) depending on the requirement, and explore beyond the book. They are thus better prepared to enter research labs .

And in conclusion , this project has immense potential to help create the next generation of scientists, engineers and creators.

Resources

Continue ReadingThe Pocket Science Lab: Who Needs it, and Why

A low-cost laboratory for everyone: Sensor Plug-ins for ExpEYES to measure temperature, pressure, humidity, wind speed, acceleration, tilt angle and magnetic field

Working on ExpEYES in the last few months has been an amazing journey and I am gratful of the support of Mario Behling, Hong Phuc Dang and Andre Rebentisch at FOSSASIA. I had a lot of learning adventures with experimenting and exploring with new ideas to build sensor plug-ins for ExpEYES. There were some moments which were disappointing and there were some other moments which brought the joy of creating sensor plug-ins, add-on devices and GUI improvements for ExpEYES.

My GSoC Gallery of Sensors and Devices: Here are all the sensors I played with for PSLab..

The complete list of sensor plug-ins developed is available at http://gnovi.edublogs.org/2015/08/21/gsoc-2015-with-fossasia-list-of-sensor-plug-ins-developed-for-expeyes/

Sensor Plugins for ExpEYES

The aim of my project is to develop new Sensor Plug-ins for ExpEYES to measure a variety of parameters like temperature, pressure, humidity, wind speed, acceleration, tilt angle, magnetic field etc. and to provide low-cost open source laboratory equipment for students and citizien scientists all over the world.

We are enhancing the scope of ExpEYES for using it to perform several new experiments. Developing a low-cost stand alone data acquisition system that can be used for weather monitoring or environmental studies is another objective of our project.

I am happy to see that the things have taken good shape with additional gas sensors added which were not included in the initial plan and we have almost achieved all the objectives of the project, except for some difficulties in calibrating sensor outputs and documentation. This issue will be solved in a couple of days.

Experimenting with different sensors in my kitchen laboratory

I started exploring and experimenting with different sensors. After doing preliminary studies I procured analog and a few digital sensors for measuring weather parameters like temperature, relative humidity and barometric pressure. A few other sensors like low cost piezoelectric sensor, accelerometer ADXL-335, Hall effect magnetic sensor, Gyro-module etc were also added to my kitchen laboratory. We then decided to add gas sensors for detecting Carbon Monoxide, LPG and Methane.

With this development ExpEYES can now be used for pollution monitoring and also in safety systems in Physics/chemistry laboratory. The work on the low-cost Dust Sensor is under progress.

Challenges, Data Sheet, GUI programs

I had to spend a lot of time in getting the sensor components, studying their data sheets, soldering and setting them up with ExpEYES. And then little time in writing GUI Programs. I started working almost 8 to 10 hours every evening after college hours (sometimes whole night) and now things have taken good shape.

Thanks to my mentor at FOSSASIA for pushing me, sometimes with strict words. I could add many new sensor plug-ins to ExpEYES and now I will also be working on Light sensors so that the Pocket Science Lab can be used in optics. With these new sensor plug-ins one can replace many costly devices from Physics, Chemistry, Biology and also Geology Lab.

What’s next? My Plan for next steps

  • Calibration of sensor data

  • Prototyping stand-alone weather station

  • Pushing data to Loklak server

  • Work on PSLab@Fossasia website

  • Fossasia Live Cd based on Lubuntu with ExpEYES and other educational softwares

  • Set-up Documentation for possible science experiments with the sensor plug-ins and low-cost, open source apparatus

Continue ReadingA low-cost laboratory for everyone: Sensor Plug-ins for ExpEYES to measure temperature, pressure, humidity, wind speed, acceleration, tilt angle and magnetic field