Controlling Motors using PSLab Device

PSLab device is capable of building up a complete science lab almost anywhere. While the privilege is mostly taken by high school students and teachers to perform scientific experiments, electronic hobbyists can greatly be influenced from the device. One of the usages is to test and debug sensors and other electronic components before actually using them in their projects. In this blog it will be explained how hobbyist motors are made functional with the use of the PSLab device.

There are four types of motors generally used by hobbyists in their DIY(Do-It-Yourself) projects. They are;

  • DC Gear Motor
  • DC Brushless Motor
  • Servo Motor
  • Stepper Motor

DC motors do not require much of a control as their internal structure is simply a magnet and a shaft which was made rotatable around the magnetic field. The following image from slideshare illustrates the cross section of a motor. These motors require high currents and PSLab device as it is powered from a USB port from a PC or a mobile phone, cannot provide such high current. Hence these type of motors are not recommended to use with the device as there is a very high probability it might burn something.

In the current context, we are concerned about stepper motors and servo motors. They cannot be powered up using direct currents to them. Inside these motors, the structure is different and they require a set of controlled signals to function. The following diagram from electronics-tutorials illustrates the feedback loop inside a servo motor. A servo motor is functional using a PWM wave. Depending on the duty cycle, the rotational angle will be determined. PSLab device is capable of generating four different square waves at any duty cycle varying from 0% to 100%. This gives us freedom to acquire any angle we desire from a servo motor. The experiment “Servo Motors” implement the following method where it accepts four angles.

public void servo4(double angle1, double angle2, double angle3, double angle4)

The experiment supports control of four different servo motors at independant angles. Most of the servos available in the market support only 180 degree rotation where some servos can rotate indefinitely. In such a case, the servo will rotate one cycle and reach its initial position.

The last type of motor is stepper motor. As the name says it, this motor can produce steps. Inside of the motor, there are four coils and and five wires coming out of the motor body connecting these coils. The illustration from Wikipedia shows how four steps are acquired by powering up the respective coil in order. This powering up process needs to be controlled and hard to do manually. Using PSLab device experiment “Stepper Motor”, a user can acquire any number of steps just by entering the step value in the text box. The implementation consists of a set of method calls;

scienceLab.stepForward(steps, 100);

scienceLab.stepBackward(steps, 100);

A delay of 100 milliseconds is provided so that there is enough time to produce a step. Otherwise the shaft will not experience enough resultant force to move and will remain in the same position.

These two experiments are possible with PSLab because the amount of current drawn is quite small which can be delivered through a general USB port. It is worth mentioning that as industry grade servo and stepper motors may draw high current as they were built to interact with heavy loads, they are not suitable for this type of experiments.

Resources:

Continue Reading

Filling Audio Buffer to Generate Waves in the PSLab Android App

The PSLab Android App works as an oscilloscope and a wave generator using the audio jack of the Android device. The implementation of the oscilloscope in the Android device using the in-built mic has been discussed in the blog post “Using the Audio Jack to make an Oscilloscope in the PSLab Android App” and the same has been discussed in the context of wave generator in the blog post “Implement Wave Generation Functionality in the PSLab Android App”. This post is a continuation of the post related to the implementation of wave generation functionality in the PSLab Android App. In this post, the subject matter of discussion is the way to fill the audio buffer so that the resulting wave generated is either a Sine Wave, a Square Wave or a Sawtooth Wave. The resultant audio buffer would be played using the AudioTrack API of Android to generate the corresponding wave. The waves we are trying to generate are periodic waves.

Periodic Wave: A wave whose displacement has a periodic variation with respect to time or distance, or both.

Thus, the problem reduces to generating a pulse which will constitute a single time period of the wave. Suppose we want to generate a sine wave; if we generate a continuous stream of pulses as illustrated in the image below, we would get a continuous sine wave. This is the main concept that we shall try to implement using code.

Initialise AudioTrack Object

AudioTrack object is initialised using the following parameters:

  • STREAM TYPE: Type of stream like STREAM_SYSTEM, STREAM_MUSIC, STREAM_RING, etc. For wave generation purposes we are using stream music. Every stream has its own maximum and minimum volume level.  
  • SAMPLING RATE: It is the rate at which the source samples the audio signal.
  • BUFFER SIZE IN BYTES: Total size of the internal buffer in bytes from where the audio data is read for playback.
  • MODES: There are two modes-
    • MODE_STATIC: Audio data is transferred from Java to the native layer only once before the audio starts playing.
    • MODE_STREAM: Audio data is streamed from Java to the native layer as audio is being played.

getMinBufferSize() returns the estimated minimum buffer size required for an AudioTrack object to be created in the MODE_STREAM mode.

minTrackBufferSize = AudioTrack.getMinBufferSize(SAMPLING_RATE, AudioFormat.CHANNEL_OUT_MONO, AudioFormat.ENCODING_PCM_16BIT);
audioTrack = new AudioTrack(
       AudioManager.STREAM_MUSIC,
       SAMPLING_RATE,
       AudioFormat.CHANNEL_OUT_MONO,
       AudioFormat.ENCODING_PCM_16BIT,
       minTrackBufferSize,
       AudioTrack.MODE_STREAM);

Fill Audio Buffer to Generate Sine Wave

Depending on the values in the audio buffer, the wave is generated by the AudioTrack object. Therefore, to generate a specific kind of wave, we need to fill the audio buffer with some specific values. The values are governed by the wave equation of the signal that we want to generate.

public short[] createBuffer(int frequency) {
   short[] buffer = new short[minTrackBufferSize];
   double f = frequency;
   double q = 0;
   double level = 16384;
   final double K = 2.0 * Math.PI / SAMPLING_RATE;

   for (int i = 0; i < minTrackBufferSize; i++) {
         f += (frequency - f) / 4096.0;
         q += (q < Math.PI) ? f * K : (f * K) - (2.0 * Math.PI);
         buffer[i] = (short) Math.round(Math.sin(q));
   }
   return buffer;
}

Fill Audio Buffer to Generate Square Wave

To generate a square wave, let’s assume the time period to be t units. So, we need the amplitude to be equal to A for t/2 units and -A for the next t/2 units. Repeating this pulse continuously, we will get a square wave.

buffer[i] = (short) ((q > 0.0) ? 1 : -1);

Fill Audio Buffer to Generate Sawtooth Wave

Ramp signals increases linearly with time. A Ramp pulse has been illustrated in the image below:

We need repeated ramp pulses to generate a continuous sawtooth wave.

buffer[i] = (short) Math.round((q / Math.PI));

Finally, when the audio buffer is generated, write it to the audio sink for playback using write() method exposed by the AudioTrack object.

audioTrack.write(buffer, 0, buffer.length);

Resources

Continue Reading

How Switch Case improve performance in PSLab Saved Experiments

PSLab android application contains nearly 70 experiments one can experiment on using the PSLab device and the other necessary circuit components and devices. These experiments span over areas such as Electronics, Electrical, Physical and High school level. All these experiments are accessible via an android adapter in the repository named “PerformExperimentAdapter”. This adapter houses a tab view with two different tabs; one for the experiment details and the other for actual experiment and resultant graphs.

The adapter extends an inbuilt class FragmentPagerAdapter;

public class PerformExperimentAdapter extends FragmentPagerAdapter

This class displays every page attached to its viewpager as a fragment. The good thing about using fragments is that they have a recyclable life cycle. Rather than creating new views for every instance of an experiment, the similar views can be recycled to use once again saving resources and improving performance. FragmentPagerAdapter needs to override a method to display the correct view on the tab select by user.

@Override
public Fragment getItem(int position) {

}

Depending on the value of position, relevant experiment documentation and the experiment implementation fragments are displayed determined using the experiment title. Performance can be critical in this place as if it takes too long to process and render a fragment, user will feel a lag.

The previous implementation was using consecutive if statements.

@Override
public Fragment getItem(int position) {
   switch (position) {
       case 0:
           if (experimentTitle.equals(context.getString(R.string.diode_iv)))
               return ExperimentDocFragment.newInstance("D_diodeIV.html");
           if (experimentTitle.equals(context.getString(R.string.zener_iv)))
               return ExperimentDocFragment.newInstance("D_ZenerIV.html");
           ...
       case 1:
           if (experimentTitle.equals(context.getString(R.string.diode_iv)))
               return ZenerSetupFragment.newInstance();
           if (experimentTitle.equals(context.getString(R.string.zener_iv)))
               return DiodeExperiment.newInstance(context.getString(R.string.half_wave_rectifier));
           ...
       default:
           return ExperimentDocFragment.newInstance("astable-multivibrator.html");
   }
}

This setup was suitable for applications where there is less than around 5 choices to chose between. As the list grows, the elements in the end of the if layers will take more time to load as each of the previous if statements need to be evaluated false in order to reach the bottom statements.

This is when this implementation was replaced using switch case statements instead of consecutive if statements. The theory behind the performance improvement involves algorithm structures; Hash Tables

Hash Tables

Hash tables use a hash function to calculate the index of the destination cell. This operation on average has a complexity of O(1) which means it will take the same time to access any two elements which are randomly positioned.

This is possible because java uses the hash code of the string to determine the index where the target is situated at. This way it is much faster than consecutive if statement calls where in the worst case it will take O(n) time to reach the statement causing a lag in the application.

Current application uses switch cases in the PerformExperimentAdapter;

@Override
public Fragment getItem(int position) {
   switch (position) {
       case 0:
           switch (experimentTitle) {
               case "Diode IV Characteristics":
                   return ExperimentDocFragment.newInstance("D_diodeIV.html");
               case "Zener IV Characteristics":
                   return ExperimentDocFragment.newInstance("D_ZenerIV.html");
               case "Half Wave Rectifier":
                   return ExperimentDocFragment.newInstance("L_halfWave.html");
           }
       case 1:
           switch (experimentTitle) {
               case "Diode IV Characteristics":
                   return ZenerSetupFragment.newInstance();
               case "Zener IV Characteristics":
                   return ZenerSetupFragment.newInstance();
               case "Half Wave Rectifier":
                   return DiodeExperiment.newInstance(context.getString(R.string.half_wave_rectifier));
           }
       default:
           return ExperimentDocFragment.newInstance("astable-multivibrator.html");
   }
}

There is one downfall in using switch case in the context. That is the inability to use string resources directly as Java requires a constant literals in the evaluation statement of a case.

Resources:

Continue Reading

Coloring Waveforms in PSLab Charts

Charts are used to display set of data in an analytical manner such that an observer can easily come to a conclusion by just looking at it without having to go through all the numerical data sets. Legends are used to differentiate a set of data set from another set. Generally, different colors and different names are used to form a legend in a chart.

MPAndroidChart is an amazing library with the capability of generating different types of graphs in an Android device. In PSLab several user interfaces are implemented using LineCharts to display different waveforms such as readings from channels attached to PSLab device, logic levels etc.

When several data sets are being plotted on the same graph area, legends are used. In PSLab Android application, Oscilloscope supports four different type of waveforms to be plotted on the same graph. Logic Analyzer implements one to four different types of logic level waveforms on the same plot. To identify which is which, legends with different colors can be used rather than just the names. For the legends to have different colors, it should be explicitly set which color should be held by which data set. Otherwise it will use the default color to all the legends making it hard to differentiate data lines when there are more than one data set is plotted.

Assume a data set is generated from a reading taken from a probe attached to PSLab device. The set will be added as an Entry to an array list as follows;

ArrayList<Entry> dataSet = new ArrayList<Entry>();

The next step will be to create a Line Data Set

LineDataSet lineData = new LineDataSet(dataSet, "DataSet 1");

This LineDataSet will contain sample values of the waveform captured by the microprocessor. A LineDataSet object support many methods to alter its look and feel. In order to set a color for the legend, setColor() method will be useful. This method accepts an integer as the color. This method can be accessed as follows;

lineData.setColor(Color.YELLOW);

MPAndroidChart provides different sets of colors under ColorTemplate. This class has several predefined colors with five colors in each color palette are added by the developers of the library and they can be accessed using the following line of code by simply calling the index value of the palette array list.

set1.setColor(ColorTemplate.JOYFUL_COLORS[0]);

Set of color palettes available in the ColorTemplate class are;

  1. LIBERTY_COLORS
  2. JOYFUL_COLORS
  3. PASTEL_COLORS
  4. COLORFUL_COLORS
  5. VORDIPLOM_COLORS
  6. MATERIAL_COLORS

The following demonstrates how the above activities produce a line chart with three different data sets with different colored legends.

This implementation can be used to enhance the readability of the waveforms letting user being able to differentiate between one waveform from another in PSLab Android application.

Resources:

PSLab official web site: https://pslab.fossasia.org/

Continue Reading

Basics behind school level experiments with PSLab

Electronics is a fascinating subject to most kids. Turning on a LED bulb, making a simple circuit will make them dive into much more interesting areas in the field of electronics. PSLab android application with the help of PSLab device implements a set of experiments whose target audience is school children. To make them more interested in science and electronics, there are several experiments implemented such as measuring body resistance, lemon cell experiment etc.

This blog post brings out the basics in implementing these type of experiments and pre-requisite.

Lemon Cell Experiment

Lemon Cell experiment is a basic experiment which will make school kids interested in science experiments. The setup requires a fresh lemon and a pair of nails which is used to drive into the lemon as illustrated in the figure. The implementation in PSLab android application uses it’s Channel 1. The cell generates a low voltage which can be detected using the CH1 pin of PSLab device and it is sampled at a rate of 10 to read an accurate result.

float voltage = (float) scienceLab.getVoltage("CH1", 10);

2000 instances are recorded using this method and plotted against each instance. The output graph will show a decaying graph of voltage measured between the nails driven into the lemon.

for (int i = 0; i < timeAxis.size(); i++) {
   temp.add(new Entry(timeAxis.get(i), voltageAxis.get(i)));
}

Human Body Resistance Measurement Experiment

This experiment attracts most of the young people to do electronic experiments. This is implemented in the PSLab android application using Channel 3 and the Programmable Voltage Source 3 which can generate voltage up to 3.3V. The experiment requires a human with drippy palms so it makes a good conductance between device connection and the body itself.

The PSLab device has an internal resistance of 1M Ohms connected with the Channel 3 pin. Experiment requires a student to hold two wires with the metal core exposed; in both hands. One wire is connected to PV3 pin when the other wire is connected to CH3 pin. When a low voltage is supplied from the PV3 pin, due to heavy resistance in body and the PSLab device, a small current in the range of nano amperes will flow through body. Using the reading from CH3 pin and the following calculation, body resistance can be measured.

voltage = (float) scienceLab.getVoltage("CH3", 100);
current = voltage / M;
resistance = (M * (PV3Voltage - voltage)) / voltage;

This operation is executed inside a while loop to provide user with a continuous set of readings. Using Java threads there is a workaround to implement the functionalities inside the while loop without overwhelming the system. First step is to create a object without any attribute.

private final Object lock = new Object();

Java threads use synchronized methods where other threads won’t start until the first thread is completed or paused operation. We make use of that technique to provide enough time to read CH3 pin and display output.

while (true) {
   new MeasureResistance().execute();
   synchronized (lock) {
       try {
           lock.wait();
       } catch (InterruptedException e) {
           e.printStackTrace();
       }
   }
}

Once the pin readings and value updates are complete the lock is released to execute the method once again.

updateDataBox();
synchronized (lock) {
   lock.notify();
}

Capacitor Discharge Experiment

This experiment is somewhat similar to the Lemon Cell Experiment as this experiments on electron storage and discharge. The experiment is carried out using two bulky electrolyte capacitors. PSLab device is capable of generating PWM waveforms with any duty cycle. Refer to this article to learn more about how PWM waves are generated using PSLab device to implement more features like sine wave generation.

Using the SQR1 pin of the PSLab device, one capacitor is charged to its fullest capacity using a PWM wave with 100% duty cycle at a 100 Hz.

scienceLab.setSqr1(100, 100, false);

This capacitor is then connected in parallel with the other capacitor which is empty. The voltage transfer is measured using CH1 pin at a sampling rate of 10

float voltage = (float) scienceLab.getVoltage("CH1", 10);

To provide a continuous update in the voltage transfer, a similar implementation is used using an object in the thread to control the implementation inside a while loop.

Resources:

Continue Reading

Implement Wave Generation Functionality in The PSLab Android App

The PSLab Android App works as an Oscilloscope using the audio jack of Android device. The implementation for the scope using in-built mic is discussed in the post Using the Audio Jack to make an Oscilloscope in the PSLab Android App. Another application which can be implemented by hacking the audio jack is Wave Generation. We can generate different types of signals on the wires connected to the audio jack using the Android APIs that control the Audio Hardware. In this post, I will discuss about how we can generate wave by using the Android APIs for controlling the audio hardware.

Configuration of Audio Jack for Wave Generation

Simply cut open the wire of a cheap pair of earphones to gain control of its terminals and attach alligator pins by soldering or any other hack(jugaad) that you can think of. After you are done with the tinkering of the earphone jack, it should look something like shown in the image below.

Source: edn.com

If your earphones had mic, it would have an extra wire for mic input. In any general pair of earphones the wire configuration is almost the same as shown in the image below.

Source: flickr

Android APIs for Controlling Audio Hardware

AudioRecord and AudioTrack are the two classes in Android that manages recording and playback respectively. For Wave Generation application we only need AudioTrack class.

Creating an AudioTrack object: We need the following parameters to initialise an AudioTrack object.

STREAM TYPE: Type of stream like STREAM_SYSTEM, STREAM_MUSIC, STREAM_RING, etc. For wave generation purpose we are using stream music. Every stream has its own maximum and minimum volume level.

SAMPLING RATE: it is the rate at which source samples the audio signal.

BUFFER SIZE IN BYTES: total size in bytes of the internal buffer from where the audio data is read for playback.

MODES: There are two modes

  • MODE_STATIC: Audio data is transferred from Java to native layer only once before the audio starts playing.
  • MODE_STREAM: Audio data is streamed from Java to native layer as audio is being played.

getMinBufferSize() returns the estimated minimum buffer size required for an AudioTrack object to be created in the MODE_STREAM mode.

private int minTrackBufferSize;
private static final int SAMPLING_RATE = 44100;
minTrackBufferSize = AudioTrack.getMinBufferSize(SAMPLING_RATE, AudioFormat.CHANNEL_OUT_MONO, AudioFormat.ENCODING_PCM_16BIT);

audioTrack = new AudioTrack(
       AudioManager.STREAM_MUSIC,
       SAMPLING_RATE,
       AudioFormat.CHANNEL_OUT_MONO,
       AudioFormat.ENCODING_PCM_16BIT,
       minTrackBufferSize,
       AudioTrack.MODE_STREAM);

Function createBuffer() creates the audio buffer that is played using the audio track object i.e audio track object would write this buffer on playback stream. Function below fills random values in the buffer due to which a random signal is generated. If we want to generate some specific wave like Square Wave, Sine Wave, Triangular Wave, we have to fill the buffer accordingly.

public short[] createBuffer(int frequency) {
   // generating a random buffer for now
   short[] buffer = new short[minTrackBufferSize];
   for (int i = 0; i < minTrackBufferSize; i++) {
       buffer[i] = (short) (random.nextInt(32767) + (-32768));
   }
   return buffer;
}

We created a write() method and passed the audio buffer created in above step as an argument to the method. This method writes audio buffer into audio stream for playback.

public void write(short[] buffer) {
   /* write buffer to audioTrack */
   audioTrack.write(buffer, 0, buffer.length);
}

Amplitude of the signal can be controlled by changing the volume level of the stream on which the buffer is being played. As we are playing the audio in music stream, so STREAM_MUSIC is passed as a parameter to the setStreamVolume() method.

value: value is amplitude level of the stream. Every stream has its different amplitude levels. getStreamMaxVolume(STREAM_TYPE) method is used to find the maximum valid amplitude level of any stream.
flag: this stackoverflow post explain all the flags of the AudioManager class.

AudioManager audioManager = (AudioManager)getSystemService(Context.AUDIO_SERVICE); audioManager.setStreamVolume(AudioManager.STREAM_MUSIC, value, flag);

Roadmap

We are working on implementing methods to fill audio buffer with specific values such that waves like Sinusoidal wave, Square Wave, Sawtooth Wave can be generated during the playback of the buffer using the AudioTrack object.

Resources

Continue Reading

Basics behind BJT and FET experiments in PSLab

A high school student in his curriculum; will come across certain electronics and electrical experiments. One of them related to semiconductor devices such as Bipolar Junction Transistors (BJTs) and Field Effect Transistors (FETs). PSLab device is capable of function as a waveform generator, voltage and current source, oscilloscope and multimeter. Using these functionalities one can design an experiment. This blog post brings out the basics one should know about the experiment and the PSLab device to program an experiment in the saved experiments section.

Channels and Sources in the PSLab Device

The PSLab device has three pins dedicated to function as programmable voltage sources (PVS) and one pin for programmable current source (PCS).

Programmable Voltage Sources can generate voltages as follows;

  • PV1 →  -5V ~ +5V
  • PV2 → -3.3V ~ +3.3V
  • PV3 → 0 ~ +3.3V

Programmable Current Source (PCS) can generate current as follows;

  • PCS → 0 ~ 3.3mA

The device has 4 channel oscilloscope out of those CH1, CH2 and CH3 pins are useful in experiments of the current context type.

About BJTs and FETs

Every semiconductor device is made of Silicon(Si). Some are made of Germanium(Ge) but they are not widely used. Silicon material has a potential barrier of 0.7 V among P type and N type sections of a semiconductor device. This voltage value is really important in an experiment as in some practicals such as “BJT Amplifier”, there is no use of a voltage value setting below this value. So the experiment needs to be programmed to have 0.7V as the minimum voltage for Base terminal.

Basic BJT experiments

BJTs have three pins. Collector, Emitter and Base. Current to the Base pin will control the flow of electrons from Emitter to Collector creating a voltage difference between Collector and Emitter pins. This scenario can be taken down to three types as;

  • Input Characteristics → Relationship between Emitter current to VBE(Base to Emitter)
  • Output Characteristics → Relationship between IC(Collector) to VCB(Collector to Base)
  • Transfer Characteristics → Relationship between IC(Collector) to IE(Emitter)

Input Characteristics

Output Characteristics

Transfer Characteristics

     

Basic FET experiments

FETs have three pins. Drain, Source and Gate. Voltage to Gate terminal will control the electron flow from either direction from or to Source and Drain. This scenario results in two types of experiments;

  • Output Characteristics → Drain current to Drain to Source voltage difference
  • Transfer Characteristics → Gate to Source voltage to Drain current
Output Characteristics Transfer Characteristics

Using existing methods in PSLab android repository

Current implementation of the android application consists of all the methods required to read voltages and currents from the relevant pins and fetch waveforms from the channel pins and output voltages from PVS pins.

ScienceLab.java class – This class implements all the methods required for any kind of an experiment. The methods that will be useful in designing BJT and FET related experiments are;

Set Voltages

public void setPV1(float value);

public void setPV2(float value);

public void setPV3(float value);

Set Currents

public void setPCS(float value);

Read Voltages

public double getVoltage(String channelName, Integer sample);

Read Currents

To read current there is no direct way implemented. The current flow between two nodes can be calculated using the PVS pin value and the voltage value read from the channel pins. It uses Ohm’s law to calculate the value using the known resistance between two nodes.

In the following schematic; the collector current can be calculated using known PV1 value and the measured CH1 value as follows;

IC = (PV1 – CH1) / 1000

This is how it is actually implemented in the existing experiments.

If one needs to implement a new experiment of any kind, these are the basics need to know. There can be so many new experiments implemented using these basics. Some of them could be;

  • Effect of Temperature coefficient in Collector current
  • The influence in β factor in Collector current

Resources:

Continue Reading

Implementing Experiment Functionality in PSLab Android

Using the PSLab Hardware Device, users can perform experiments in various domains like Electronics, Electrical, Physics, School Level experiments, etc. These experiments can be performed using functionalities exposed by hardware device like Programmable Voltage Sources, Programmable Current Source, etc. In this post we will try implementing the functionality to perform an experiment using the PSLab Hardware Device and the PSLab Android App.

Let us take the Ohm’s law experiment as an example and see how it’s implement using the  PSLab Android App.

Ohm’s law states that the current through a conductor between two points is directly proportional to the voltage across the two points, effectively using a constant of proportionality called Resistance (R) where,

R = V / I

Schematic

Layout to perform Ohm’s law experiment

The Ohm’s law experiment requires a variable current, so a seekbar is provided to change the current coming from PCS channel, values of which are continuously reflected in the TextView next to it.

Implementation

The Read button has a listener attached to it. Once it is clicked, the currentValue is updated with the value parsed from the seekbar progress and the selectedChannel variable is assigned from the spinner. These variables are used by the background thread to change the current supplied by current source (PCS pin) of the device and to read the updated voltage from the selected channel of the device.

btnReadVoltage.setOnClickListener(new View.OnClickListener() {
   @Override
   public void onClick(View v) {
       selectedChannel = channelSelectSpinner.getSelectedItem().toString();
       currentValue = Double.parseDouble(tvCurrentValue.getText().toString());
       if (scienceLab.isConnected()) {
           CalcDataPoint calcDataPoint = new CalcDataPoint();
           calcDataPoint.execute();
       } else {
           Toast.makeText(getContext(), "Device not connected", Toast.LENGTH_SHORT).show();
       }
   }
});

CalcDataPoint is an AsyncTask which does all the underlying work like setting the current at the PCS channel, reading the voltage from the CH1 channel and triggering the update of the data points on the graph.

private class CalcDataPoint extends AsyncTask<Void, Void, Void> {

   @Override
   protected Void doInBackground(Void... params) {
       scienceLab.setPCS((float) currentValue);
       switch (selectedChannel) {
           case "CH1":
               voltageValue = scienceLab.getVoltage("CH1", 5);
               break;
           case "CH2":
               voltageValue = scienceLab.getVoltage("CH2", 5);
               break;
           case "CH3":
               voltageValue = scienceLab.getVoltage("CH3", 5);
               break;
           default:
               voltageValue = scienceLab.getVoltage("CH1", 5);
       }
       x.add((float) currentValue);
       y.add((float) voltageValue);
       return null;
   }

   @Override
   protected void onPostExecute(Void aVoid) {
       super.onPostExecute(aVoid);
       updateGraph();
   }
}

updateGraph() method is used to update the graph on UI thread. It creates a new dataset from the points which were added by the background thread and refreshes the graph with it using the invalidate() method.

private void updateGraph() {
   tvVoltageValue.setText(df.format(voltageValue));
   List<ILineDataSet> dataSets = new ArrayList<>();
   List<Entry> temp = new ArrayList<>();
   for (int i = 0; i < x.size(); i++) {
       temp.add(new Entry(x.get(i), y.get(i)));
   }
   LineDataSet dataSet = new LineDataSet(temp, "I-V Characteristic");
   dataSet.setColor(Color.RED);
   dataSet.setDrawValues(false);
   dataSets.add(dataSet);
   outputChart.setData(new LineData(dataSets));
   outputChart.invalidate();
}

Roadmap

We are planning to add an option to support multiple trials of the same experiment and save each trails for further reference. App flow to perform experiment is based on Science Journal app by Google.

Resources

  • Article on Ohm’s law and Power on electronics-tutorial
  • To know more about Voltage, Current, Resistance and Ohm’s law, head on to detailed tutorial on sparkfun
  • Implementation of perform experiment functionality in PSLab Desktop App

Continue Reading

Performing the Experiments Using the PSLab Android App

General laboratory experiments can be performed using core functionalities offered by the PSLab hardware device like Programmable Voltage Sources, Programmable Current Source, Analog to Digital Converter, Frequency Counter, Function Generators, etc. In this post we will  have a brief look on a general laboratory experiment and how we can perform it using the  PSLab Android App and the PSLab hardware device.

We are going to take Zener I-V Characteristics Curve experiment as an example to understand how we can perform a general experiment using the PSLab device. First, we will  look at the general laboratory experiment and it’s format. Then we will see how that experiment can be performed using the PSLab Android App and the PSLab Hardware Device.

Experiment Format of General Experiment in Laboratory

AIM: In this experiment, our aim is to observe the relation between the voltage and the corresponding current that was generated. We will then plot it to get the dependence.

Apparatus:

  • A Zener Diode
  • A DC Voltage Supplier
  • Bread Board
  • 100 ohm resistor
  • 2 multimeter for measuring current and voltages
  • Connecting wires

Theory: A Zener Diode is constructed for operation in the reverse breakdown region.The relation between I-V is almost linear in this case, Vz = Vz0 + Iz * Rz , where Rz is the dynamic resistance of the zener at the operating point and Vz0 is the voltage at which the straight-line approximation of the I-V characteristic intersects the horizontal axis. After reaching a certain voltage, called the breakdown voltage, the current increases drastically even for a small change in voltage. However, there is no appreciable change in voltage accompanying this current change. So, when we plot the graph, we get a curve which is very near to the x-axis and nearly parallel to it until a particular potential value, called the Zener potential, is reached. After the Zener potential Vz value, there will be a sudden change and the graph becomes exponential.

Source: learning about electronics

Procedure: Construct the circuit as shown in figure below

Now, start increasing the voltage until a reading in the multimeter for current can be obtained. Note that reading. Now, start increasing the input voltage and take the corresponding current readings. Using the set of readings observed,  construct a V vs I graph. This graph gives us the I-V characteristics. The slope of the curve at any point gives the dynamic resistance at that voltage.

Result: The Characteristic curve has been verified after plotting V-I data points on the graph.

Experiment format in PSLab Android App

We have a ViewPager that renders two fragments:

  1. Experiment Doc– It consists of information like the Aim of experiment, Schematic, Output screenshot that we will get after the experiment has been performed.
  2. Experiment Setup– It consists of the setup to configure the PSLab device. This fragment is analogous to the experiment apparatus of the laboratory.  

Below is a gif showing the experiment doc of the Zener I-V experiment which is to be performed using the PSLab device. It consists of a schematic and a screenshot of the output that we get after performing the experiment.

Source: PSLab Android

Make the circuit connections on a breadboard as shown in the schematic. After the circuit is complete we need to configure experiment.

Source: PSLab Android

To configure the experiment, we give the initial voltage, the final voltage and the step size. After clicking on START EXPERIMENT, the voltage is varied on the PV1 channel from the initial voltage to final voltage by increasing the voltage in step size. At each variation of voltage, the current is calculated by dividing the voltage difference between resistor by its resistance value i.e

I = ( VPV1 - VCH1 ) / R

As soon as the initial voltage reaches the final voltage, the experiment stops and data points are plotted on the graph. From the graph we can see the change in the current through a zener diode when the voltage varies across it’s terminals.

The output that was obtained after the experiment is I-V characteristic curve for Zener Diode as shown in the image below.

It can be clearly seen that after the breakdown voltage (~0.7V) the  current increases drastically with respect to the  increase in the voltage. After this point, the voltage can be considered  nearly constant unlike the current which varies exponentially.

In the PSLab Android App, there are read-back errors while reading bytes serially from the PSLab Hardware Device. As a result, the data points are not read accurately and an inaccurate plot is generated on the graph as shown in the image below.

Source: PSLab Android

Resources

Continue Reading

Implementing Tree View in PSLab Android App

When a task expands over sub tasks, it can be easily represented by a stem and leaf diagram. In the context of android it can be implemented using an expandable list view. But in a scenario where the subtasks has mini tasks appended to it, it is hard to implement it using the general two level expandable list views. PSLab android application supports many experiments to perform using the PSLab device. These experiments are divided into major sections and each experiments are listed under them.

The best way to implement this functionality in the android application is using a multi layer treeview implementation. In this context three layers are enough as follows;


This was implemented with the help from a library called AndroidTreeView. This blog will outline how to modify and implement it in PSLab android application.

Basic Idea

Tree view implementation simply follows the data structure “Tree” used in algorithms. Every tree has a root where it starts and from the root there will be branches which are connected using edges. Every edge will have a parent and child. To reach a child, one has to traverse through only one route.

Setting Up Dependencies

Implementing tree view begins with setting up dependencies in the gradle file in the project.

compile 'com.github.bmelnychuk:atv:1.2.+'

Creating UI for tree view

The speciality about this implementation is that it can be loaded into any kind of a layout such as a linearlayout, relativelayout, framelayout etc.

final TreeNode Root = TreeNode.root();
Root.addChildren(
       // Add child nodes here
);
// Set up the tree view
AndroidTreeView experimentsListTree = new AndroidTreeView(getActivity(), Root);
experimentsListTree.setDefaultAnimation(true);
[LinearLayout/RelativeLayout].addView(experimentsListTree.getView());

Creating a node holder

Trees are made of a collection of tree nodes. A holder for a tree node can be created using an object which extends the BaseNodeViewHolder class provided by the library. BaseNodeViewHolder requires a holder class which is generally static so that it can be accessed without creating an instance which nests textviews, imageviews and buttons.

Once the holder extends the BaseNodeViewHolder, it should override two methods as follows;

@Override
public View createNodeView(final TreeNode node, ClassContainingNodeData header) {

}

@Override
public void toggle(boolean active) {

}

createNodeView() which inflate the view and toggle() method which can be used to toggle clicks on the tree node in the UI.

The following code snippet shows how to create an object which extends the above mentioned class with the overridden methods.

public class ExperimentHeaderHolder extends TreeNode.BaseNodeViewHolder<ExperimentHeaderHolder.ExperimentHeader> {

    private ImageView arrow;

    public ExperimentHeaderHolder(Context context) {
            super(context);
    }

    @Override
    public View createNodeView(final TreeNode node, ExperimentHeader header) {

            final LayoutInflater inflater = LayoutInflater.from(context);
            final View view = inflater.inflate(R.layout.header_holder, null, false);

            TextView title = (TextView) view.findViewById(R.id.title);
            title.setText(header.title);

            arrow = (ImageView) view.findViewById(R.id.experiment_arrow);
        
            return view;
    }

    @Override
    public void toggle(boolean active) {
            arrow.setImageResource(active ? arrow_drop_up : arrow_drop_down);
    }

    public static class ExperimentHeader {

            public String title;

            public ExperimentHeader(String title) {
               this.title = title;
            }
    }
}

Creating a TreeNode

Once the holder is complete, we can move on to creating an actual tree node. TreeNode class requires an object which extends the BaseNodeViewHolder class as mentioned earlier. Also it requires a viewholder which it can use to inflate the view in the tree layout. The viewholder can be a different class. The importance of this different implementation can be explained as follows;

TreeNode treeNode = new TreeNode(new ExperimentHeaderHolder.ExperimentHeader(“Title”))
       .setViewHolder(new ExperimentHeaderHolder(context));

In the Saved Experiments section of PSLab android application, all the three levels shouldn’t implement the toggle behavior as a user clicks on the experiment (last level item), he doesn’t expect the icon to change like the ones in headers where an arrow points up and down when he clicks on it. In this case we can reuse a holder which has the title attribute while creating only a holder which does not override the toggle function to ignore icon toggling at the last level of the tree view. This explanation can be illustrated using a code snippet as follows;

new TreeNode(new ExperimentHeaderHolder.ExperimentHeader(“Title”))
       .setViewHolder(new IndividualExperimentHolder(context));

Creating parent nodes and finally the Root node

The final part of the implementation is to create parent nodes to group up similar experiments together. The TreeNode object supports a method call addChild() and addChildren(). addChild() method allows adding one tree node to the specific tree node and addChildren() method allows adding many tree nodes at the same time. Following code snippet illustrates how to add many tree nodes to a node and make it a parent node.

treeDiodeExperiments.addChildren(treeZener, treeDiode, treeDiodeClamp, treeDiodeClip, treeHalfRectifier, treeFullWave);

Setting a click listener

Click listener is a very important implementation. Each tree node can be attached with a click listener using the interface provided by the library as follows;

treeNode.setClickListener(new TreeNode.TreeNodeClickListener() {
   @Override
   public void onClick(TreeNode node, Object value) {

   }
});

The value object is the class attached to the holder and its attributes can be retireved by casting it to the specific class using casting methods;

String title = ((ExperimentHeaderHolder.ExperimentHeader) value).title;

Resources:

Continue Reading
Close Menu